# Densities and Viscosities of Ternary Systems of Water + Fructose + Sodium Chloride from 20 to 40 $^{\circ}\text{C}$

## José F. Comesaña, Juan J. Otero, Enrique Camesella, and Antonio Correa\*

Department of Chemical Engineering, University of Vigo, 36200 Vigo, Spain

The densities and dynamic viscosities of aqueous solutions of sodium chloride, fructose, and fructose + sodium chloride were measured at temperatures from (20 to 40) °C. The concentration range studied for both sodium chloride and fructose was (0 to 4) mol·kg<sup>-1</sup>. For fructose + sodium chloride solutions, the experimental values were correlated with the concentration of sodium chloride. The maximum deviation was always less than 0.2%.

### Introduction

The objective of applying an osmotic treatment, for example, to foods, is to produce products that may be stored without having to use severe heat treatment, freezing, or aseptic packaging. The improvement of nutritional, sensory, or functional properties or the storage stability of the end products is achieved by modifying the chemical composition of the food material through controlled water removal and a selective incorporation of solutes. The constraints to the formulation of new products are economic constraints and consumer acceptance. The products must be salable and producible at an economic cost. Osmotic treatments may offer these economic advantages.<sup>1</sup>

The range of applications of this processing technique is wide: fruit, vegetables, meat, and fish can be osmotically treated preceding conventional processing.<sup>2–6</sup> Binary and ternary aqueous solutions of sugars, inorganic salts, alcohols, and polyols can be used as osmotic agents. The use of mixed blends makes it possible to take benefit from the respective advantages of each solute. Therefore, the understanding of osmotic treatments needs to take into account the physical properties of the aqueous solutions.

Densities and viscosities of concentrated water + sugar + sodium chloride have been little studied to date.<sup>7,8</sup> The objective of this work was to measure the density and dynamic viscosity of the ternary system water + fructose + sodium chloride in the temperature range (20 to 40) °C. A molal concentration range of (0 to 4) mol·kg<sup>-1</sup> of solutes was studied.

#### **Experimental Section**

Aqueous solutions of fructose, sodium chloride, and fructose + sodium chloride were prepared by mass with distilled water, obtained from the MILLI-Q 185 PLUS system with a resistivity of 18.2 MQ·cm. The solutes were Merck reagents of nominal purity > 99% for fructose and 99.5% for sodium chloride. All solutions were prepared from water and reagents by mass using a Scaltec SBA31 analytical balance with a readability of  $\pm 0.1$  mg. The physical properties were measured at temperatures ranging from (20 to 40) °C at 10 °C intervals.

The density was measured with an Anton Paar DMA 4500 densimeter with a precision of  $\pm1\times10^{-4}~gcm^{-3}$ . The

 $\ast$  To whom correspondence should be addressed. E-mail: acorrea@ uvigo.es.

| Table 1. | <b>Densities</b> and | d Viscosities | of the | <b>Solutions</b> | of |
|----------|----------------------|---------------|--------|------------------|----|
| Fructose | and Sodium           | Chloride      |        |                  |    |

|                    |      | Water $+ c$     |                     |           | Water +             |            |                     |           |             |
|--------------------|------|-----------------|---------------------|-----------|---------------------|------------|---------------------|-----------|-------------|
|                    |      | Sodium Chloride |                     |           |                     | c Fructose |                     |           |             |
| c/(mol·            |      | ρ/(kg           | (•m <sup>−3</sup> ) | η/(mPa·s) |                     | ρ/(kg      | •m <sup>-3</sup> )  | η/(mPa·s) |             |
| kg <sup>-1</sup> ) | t/°C | exptl           | lit.                | exptl     | lit.                | exptl      | lit.                | exptl     | lit.        |
| 0.000              | 20   | 998.2           | 998.2 <sup>a</sup>  | 1.002     | 1.002 <sup>a</sup>  | 998.2      |                     | 1.002     |             |
|                    | 30   | 995.6           | 995.7 <sup>a</sup>  | 0.797     | 0.7975 <sup>a</sup> | 995.6      |                     | 0.797     |             |
|                    | 40   | 992.2           | 992.2 <sup>a</sup>  | 0.653     | 0.6530 <sup>a</sup> | 992.2      |                     | 0.653     |             |
| 0.500              | 20   | 1018.6          | 1018.5 <sup>b</sup> | 1.041     | $1.047^{b}$         | 1031.4     | $1031.3^{b}$        | 1.244     | $1.242^{b}$ |
|                    |      |                 | 1018.5 <sup>c</sup> |           | $1.034^{d}$         |            |                     |           |             |
|                    | 30   | 1015.7          | 1015.5 <sup>c</sup> | 0.835     | $0.834^{d}$         | 1028.3     |                     | 0.979     |             |
|                    | 40   | 1011.9          | 1011.8 <sup>c</sup> | 0.688     | $0.682^{d}$         | 1024.4     |                     | 0.795     |             |
| 1.000              | 20   | 1037.8          | 1037.8 <sup>b</sup> | 1.087     | $1.092^{b}$         | 1061.1     | $1060.9^{b}$        | 1.549     | $1.547^{b}$ |
|                    |      |                 | 1037.8 <sup>c</sup> |           | $1.079^{d}$         |            |                     |           |             |
|                    | 30   | 1034.4          | 1034.5 <sup>c</sup> | 0.873     | $0.873^{d}$         | 1058.0     |                     | 1.202     |             |
|                    | 40   | 1030.4          | 1030.4 <sup>c</sup> | 0.722     | $0.716^{d}$         | 1053.6     |                     | 0.964     |             |
| 1.500              | 20   | 1056.3          | $1056.4^{b}$        | 1.138     | $1.144^{b}$         | 1087.3     | 1087.3 <sup>b</sup> | 1.941     | $1.932^{b}$ |
|                    |      |                 |                     |           | $1.130^{d}$         |            |                     |           |             |
|                    | 30   | 1052.6          |                     | 0.918     | 0.917 <sup>d</sup>  | 1083.3     |                     | 1.484     |             |
|                    | 40   | 1048.4          |                     | 0.760     | $0.753^{d}$         | 1078.6     |                     | 1.173     |             |
| 2.000              | 20   | 1074.1          | $1074.1^{b}$        | 1.196     | $1.203^{b}$         | 1111.3     | $1111.2^{b}$        | 2.397     | $2.400^{b}$ |
|                    |      |                 | 1074.2°             |           | $1.187^{d}$         |            |                     |           |             |
|                    | 30   | 1070.1          | 1070.2°             | 0.966     | $0.964^{d}$         | 1106.7     |                     | 1.803     |             |
|                    | 40   | 1065 7          | 1065 8c             | 0.802     | 0 793 <sup>d</sup>  | 1101 7     |                     | 1 408     |             |
| 2 500              | 20   | 1091 4          | 1091 3 <sup>b</sup> | 1 264     | $1.272^{b}$         | 1132 7     | 1132 6 <sup>b</sup> | 2 978     | 2 9726      |
| 2.000              | ~0   | 1001.1          | 1001.0              | 1.201     | $1.251^{d}$         | 1102.7     | 1102.0              | 2.010     | 2.012       |
|                    | 30   | 1087 2          |                     | 1 0 2 1   | $1.015^{d}$         | 1128.0     |                     | 2 2 1 8   |             |
|                    | 40   | 1082 5          |                     | 0.8/8     | 0.836d              | 1122.6     |                     | 1 607     |             |
| 3 000              | 20   | 1107 8          | 1107 04             | 1 222     | 1 346a              | 1159 2     | 1152 34             | 2 711     | 3 7000      |
| 5.000              | 20   | 1107.0          | 1107.5<br>1108.0¢   | 1.555     | 1 321d              | 1102.0     | 1102.0              | 5.744     | 5.700       |
|                    | 30   | 1103 4          | $1103.5^{\circ}$    | 1 077     | 1 072 <sup>d</sup>  | 1147 2     |                     | 2 7 2 8   |             |
|                    | 40   | 1098.6          | 1098 70             | 0.895     | 0.836d              | 1141.6     |                     | 2 055     |             |
| 3 500              | 20   | 1123.9          | 1123 8 <sup>b</sup> | 1 411     | 1 420 <sup>b</sup>  | 1170.2     | 1170 2              | 4 603     | 4 628b      |
| 0.000              | 20   | 1120.0          | 1120.0              | 1.111     | 1.398 <sup>d</sup>  | 1170.2     | 1170.2              | 4.000     | 1.020       |
|                    | 30   | 1119.2          |                     | 1.140     | $1.133^{d}$         | 1165.0     |                     | 3.284     |             |
|                    | 4ŏ   | 1114.3          |                     | 0.945     | $0.934^{d}$         | 1159.1     |                     | 2,451     |             |
| 4 000              | 20   | 1139.2          | 1139 4 <sup>b</sup> | 1 4 9 9   | $1.502^{b}$         | 1186.6     | 1186 5 <sup>b</sup> | 5 698     | 5 728b      |
| 1.500              | 20   | 1100.2          | 1139.4 <sup>c</sup> | 1.100     | 1.483 <sup>d</sup>  | 1100.0     | 1100.0              | 0.000     | 0.120       |
|                    | 30   | 1134.4          | 1134 6 <sup>c</sup> | 1 208     | 1 199 <sup>d</sup>  | 1181.0     |                     | 3 976     |             |
|                    | 40   | 1129 3          | 1129 60             | 1 000     | 0 989d              | 1174 0     |                     | 2 923     |             |
|                    | 40   | 1120.0          | 1120.0              | 1.000     | 0.000               | 11/1.3     |                     | 2.020     |             |

 $^a$  Marsh (1987).  $^b$  Weast (1976).  $^c$  Pitzer et al. (1984).  $^d$  Afzal et al. (1989).

temperature of the densimeter was controlled to  $\pm 0.01$  °C. Each density value was the average of at least three measurements, and the maximum deviations from the average were always less than 0.01%.

The kinematic viscosity was determined from the transit time of the liquid meniscus through a capillary measured with a precision of  $\pm 0.1$  s in a Schott-Geräte AVS 350 automatic Ubbelohde viscosimeter. The viscosimeter was immersed in a bath, and the precision of the temperature control in all these measurements was  $\pm 0.05$  °C. Each measurement was repeated at least 10 times with a maximum deviation of less than 0.4%. The dynamic viscosity was calculated by multiplying the kinematic viscosity by the corresponding density.

| c/(mol⋅ kg <sup>-1</sup> ) | ) <i>t</i> /°C | $ ho/(kg\cdot m^{-3})$ | η/(mPa∙s)              | ρ/(kg•m <sup>−3</sup> ) | η/(mPa⋅s)                | $ ho/(kg\cdot m^{-3})$ | η/(mPa∙s)           | ρ/(kg•m <sup>−3</sup> ) | η/(mPa·s)        |
|----------------------------|----------------|------------------------|------------------------|-------------------------|--------------------------|------------------------|---------------------|-------------------------|------------------|
|                            |                | Water + 0.5            | m Fructose +           | Water + 1.0 r           | n Fructose +             | Water + 1.5            | n Fructose +        | Water + 2.0 m           | Fructose +       |
| 0 500                      | 00             | c Sodium Chi           | loride                 | c Sodium Chl            | oride                    | c Sodium Chi           | oride               | c Sodium Chio           | ride             |
| 0.500                      | 20             | 1048                   | 9.9 1.295              | 1077                    |                          | 1102                   | .7 2.016            | 1125.4                  | L 2.513          |
|                            | 30             | 1040                   | 0.4 1.024              | 10/3                    | 5.9 1.259                | 1098                   | .5 1.546            | 1121.0                  | 1.893            |
| 1 000                      | 40             | 1044                   | 2.2 0.834              | 1008                    |                          | 1093                   | ./ 1.22/            | 1110.0                  | 5 1.480          |
| 1.000                      | 20             | 106/                   | 1.355                  | 1093                    | 5.9 1.693                | 111/                   | .8 2.108            | 1139.3                  | 3 2.633          |
|                            | 30             | 1063                   | 5.6 1.075              | 1085                    | 1.8 1.324                | 1113                   | .4 1.620            | 1134.0                  | 1.994            |
| 1 500                      | 40             | 103                    | 1.3 0.878              | 1083                    |                          | 1108                   | .4 1.288            | 1129.4                  | L 1.339          |
| 1.500                      | 20             | 1084                   | 1.4 1.418              | 1108                    | 1.3  1.773               | 1132                   | .2 2.214            | 1102.7                  | 2.773            |
|                            | 30             | 1000                   |                        | 1103                    | 0.2 1.300                | 112/                   | .0 1.703            | 1147.0                  | 5 2.090          |
| 2 000                      | 40             | 1073                   | 0.0  0.922             | 1100                    | 1.5 1.119                | 1122                   | .0 1.004            | 1144.3                  | 0 1.007          |
| 2.000                      | 20             | 1100                   | J.O 1.491              | 1124                    | 1.004                    | 1140                   | .2 2.332            | 1103.0                  | 2.310            |
|                            | 30             | 1090                   | 0.0 1.100              | 1120                    | 1 1.409                  | 1141                   | .4 1.791            | 1100.0                  | 2 2.203          |
| 2 500                      | 40             | 1091                   | 1.7 0.971              | 1110                    | 0.1 1.170                | 1150                   | 6 9 459             | 1133.4                  | 2 1.729          |
| 2.500                      | 20             | 1110                   | 0.0 1.070              | 1138                    | 1 1.900                  | 1159                   | .0 2.430<br>7 1.900 | 11/0.4                  | 2 3.077          |
|                            | 40             | 1114                   | 5.1 1.201<br>7.9 1.025 | 1104                    | 1.4 1.340                | 1134                   | 1 1.090             | 11/3.1                  | 2 1 9 1 0        |
| 2 000                      | 40             | 1107                   | 1.2 1.025              | 1163                    | 0.3 1.243                | 1149                   | 6 2 506             | 1107.0                  | 1.019            |
| 3.000                      | 20             | 113                    | 1.7 1.002              | 1100                    | 0.3 2.079                | 11/6                   | 6 1 004             | 1190.4                  | E 3.230          |
|                            | 40             | 1120                   | 7.1 1.322              | 1140                    | 0.4 1.024                | 1107                   | 0 1.994             | 1103.4                  | 2 2.400<br>1 091 |
| 3 500                      | 20             | 11.44                  | 2.0 1.001<br>2.5 1.769 | 1143                    | 2 1.310<br>2 0 9 9 0 9   | 1102                   | .2 1.303<br>1 9.759 | 11/9.3                  | 2 1.921          |
| 3.300                      | 20             | 1140                   | 17 1 200               | 1100                    | 0 1710                   | 1100                   | 2 2 100             | 1106 9                  | 2 2 5 0 5        |
|                            | 40             | 1141                   | 2.7 1.399              | 1101                    | .9 1.710                 | 1100                   | .3 2.100<br>7 1.679 | 1190.0                  | 2 025            |
| 4 000                      | 20             | 1160                   | 1.143                  | 1190                    | 1.0 1.304                | 11/4                   | 6 2 0 2 2           | 191.1                   | 2 2 6 6 5        |
| 4.000                      | 20<br>20       | 115                    | 5.8 1.671              | 1175                    | 1 2 2.341<br>0 1 821     | 1107                   | 3 2 2 2 2 1         | 1213.0                  | 2 2745           |
|                            | 40             | 1150                   | 1.405                  | 1160                    | 1.0 1.021                | 1196                   | 8 1 768             | 1200.2                  | 5 2 1 2 1        |
|                            | 40             | Water $\pm 2.5$        | 5.0 $1.211$            | Water $\pm 3.0$ r       | $r_{\rm Eructoro} \perp$ | Water $\pm 35$         | 1.700               | Water $\pm 4.0$ m       | $Fructoro \perp$ |
|                            |                | c Sodium Ch            | lorido                 | c Sodium Ch             | lorido                   | c Sodium Chl           | arida               | c Sodium Chlo           | rido             |
| 0 500                      | 20             | 11/6                   | 31 2120                | 116/                    | 101100                   | 1101                   | 7 / 919             | 1107                    | 1 5 057          |
| 0.300                      | 20             | 1140                   | 19 9 9 9 9 9           | 1104                    | 16 2 8 20                | 1101                   | 5 2 1 2 1           | 1107.4                  | 1 3.337          |
|                            | 40             | 1141                   | 57 1 700               | 1153                    | 2.025                    | 1170                   | 6 2 560             | 1192.0                  | 3 3 063          |
| 1 000                      | 20             | 1150                   | 20 2286                | 1176                    | 8 1088                   | 1102                   | 9 5 053             | 1207.0                  | 6 260            |
| 1.000                      | 30             | 115/                   | 10 2 137               | 1171                    | 6 2 967                  | 1187                   | 6 3 605             | 1207.0                  | 1 1 372          |
|                            | 40             | 11/1                   | 25 1 882               | 1166                    | 0 2 256                  | 1181                   | 7 2 604             | 1106 9                  | 2 2 9 1 7        |
| 1 500                      | 20             | 1171                   | 1 3 3 453              | 1189                    | 24 4 293                 | 1203                   | 8 5 329             | 1218 (                  | 6584             |
| 1.000                      | 30             | 1166                   | 3 2 2 560              | 1189                    | 1 3 1 2 2                | 1198                   | 4 3 787             | 1212 4                  | 4 598            |
|                            | 40             | 1160                   | 1.2 1.000              | 1177                    | 3 2 372                  | 1192                   | 5 2 837             | 1206.3                  | 3 3 377          |
| 2 000                      | 20             | 1189                   | 3 4 3 636              | 1190                    | 16 4527                  | 1214                   | 3 5 606             | 1227 9                  | 6 951            |
| 2.000                      | 30             | 1178                   | 8 1 2 693              | 1194                    | 2 3 283                  | 1208                   | 8 3 981             | 1222 3                  | 4 833            |
|                            | 40             | 1179                   | 2.5 2.079              | 1188                    | 4 2 4 93                 | 1202                   | 8 2 977             | 1216 2                  | 3 552            |
| 2 500                      | 20             | 1195                   | 5.0 3.850              | 1210                    | 5 4 772                  | 1224                   | 6 5 923             | 1237 6                  | 3 7 344          |
| 2.000                      | 30             | 1189                   | 9.7 2.849              | 1205                    | 1 <u>3.461</u>           | 1219                   | 0 4.204             | 1232.0                  | 5.103            |
|                            | 40             | 1184                   | 10 2 197               | 1190                    | 2 2 624                  | 1213                   | 0 3 1 3 2           | 1225.8                  | 3 733            |
| 3 000                      | 20             | 1206                   | 3 4 070                | 1221                    | 1 5 066                  | 1234                   | 5 6 273             | 1247 (                  | 7 799            |
| 0.000                      | 30             | 1201                   | 1 3.012                | 1215                    | 6 3.667                  | 1229                   | 0 4.444             | 1241.3                  | 5.400            |
|                            | 4ŏ             | 1195                   | 5.3 2.311              | 1209                    | 2.762                    | 1223                   | .0 3.304            | 1235.2                  | 3.933            |
| 3.500                      | 20             | 1212                   | 7.4 4.313              | 1231                    | .4 5.357                 | 1244                   | .3 6.652            | 1256.2                  | 8.246            |
| 0.000                      | 3ŏ             | 1212                   | 2.0 3.170              | 1226                    | 3.864                    | 1238                   | 7 4.694             | 1250.5                  | 5.694            |
|                            | 40             | 1206                   | 3.2 2.434              | 1220                    | 0.0 2.913                | 1232                   | .6 3.478            | 1244.3                  | 3 4.142          |
| 4,000                      | 20             | 1229                   | 3.2 4.567              | 1241                    | 6 5.692                  | 1253                   | 8 7.075             | 1265 (                  | 8,754            |
| 1.000                      | ãŏ             | 1222                   | 2.7 3.351              | 1236                    | 6.0 4.088                | 1248                   | .2 4.966            | 1259.4                  | 6.022            |
|                            | 40             | 1216                   | 3.8 2.567              | 1230                    | 0.0 3.082                | 1242                   | .1 3.672            | 1253.2                  | 2 4.368          |
|                            |                | 1                      |                        | 1800                    |                          | 1                      |                     | 1.000.4                 |                  |

 Table 2. Densities and Viscosities of the Solutions of Fructose + Sodium Chloride

The densimeter and the viscosimeter were calibrated with distilled water. The measured density and kinematic viscosity of water at the working temperatures are included in Table 1 and are compared with values published by Marsh.<sup>9</sup>

#### **Results and Discussion**

The densities and viscosities of aqueous solutions of fructose and sodium chloride at (20, 30, and 40) °C are presented in Table 1. Some of these values are compared with others found in the literature.<sup>10–12</sup>

The experimental results show that, for each temperature studied, the values of both properties increase as the concentration in both solutions increases, the effect being greater in the case of fructose, especially for viscosity.

Furthermore, for a certain concentration, a reduction in the densities and viscosities of the solutions under investigation is observed when temperature increases. In the case of density, the decline is practically constant for both systems in the concentration range studied. With respect to viscosity, the behavior of the systems is different, since the variation is nearly constant in the case of sodium chloride yet for fructose it increases notably as the solutions become more concentrated.

Table 2 includes the densities and viscosities of the aqueous solutions of fructose + sodium chloride at (20, 30, and 40) °C. For each solution studied, a decrease in the values of both properties is observed when temperature is increased.

For each temperature, both properties are enhanced when the concentration of the solutions in the entire concentration range being considered augments. When densities and viscosities in different ternary systems, having a specific sodium chloride content, are compared with values of binary systems, having the same fructose content as that in the ternary, it is observed that the effect of the salt is practically the same for the different fructose concentrations. Similarly, when comparing densities and viscosities of the different ternary systems that have the same fructose content with respect to corresponding values of the binary systems with the same sodium chloride concentration as that of the ternary, it is observed that the effect of the sugar is practically the same for the different sodium chloride concentrations. Nonetheless, the effect produced by fructose is greater, especially in the case of viscosity; therefore, of the different ternary systems having a specific total molality, the one with the greatest density and viscosity is that exhibiting the highest fructose concentration.

The densities of the fructose + sodium chloride solutions,  $\rho$ , were expressed as a function of the concentration of sodium chloride by an empirical equation of the form<sup>13</sup>

$$\rho/(\mathbf{kg}\cdot\mathbf{m}^{-3}) = \rho_{\rm d}/(\mathbf{kg}\cdot\mathbf{m}^{-3}) + \sum_{i=2}^{4} A_i (c/(\mathbf{mol}\cdot\mathbf{kg}^{-1}))^{i/2}$$
(1)

where  $\rho_d$  is the density of the solutions in the absence of sodium chloride, *c* is the molal concentration of sodium chloride, and  $A_i$  are the adjustable coefficients whose values

Table 3. Parameters of Eqs 1 and 2 for the Sodium Chloride Concentration Dependence of the Densities and Viscosities of the Aqueous Solutions of Fructose + **Sodium Chloride** 

| d(mol·      |      |       | ρ (eq 1) | )      | η (eq 2)  |           |           |           |
|-------------|------|-------|----------|--------|-----------|-----------|-----------|-----------|
| $kg^{-1}$ ) | t/°C | $A_2$ | $A_3$    | $A_4$  | $10^{3}A$ | $10^{3}B$ | $10^{3}D$ | $10^{3}E$ |
| 0.500       | 20   | 38.57 | -1.892   | -0.612 | 1.076     | 95.26     | 13.037    | 0.276     |
|             | 30   | 37.39 | -1.321   | -0.718 | 4.169     | 81.55     | 9.177     | 0.180     |
|             | 40   | 37.11 | -1.624   | -0.580 | 0.438     | 76.64     | 5.141     | 0.205     |
| 1.000       | 20   | 32.96 | 0.536    | -1.093 | 8.094     | 118.91    | 15.601    | 0.393     |
|             | 30   | 31.95 | 1.013    | -1.184 | 1.296     | 111.28    | 7.531     | 0.399     |
|             | 40   | 31.73 | 0.860    | -1.114 | 0.702     | 93.02     | 6.408     | 0.180     |
| 1.500       | 20   | 32.01 | -0.911   | -0.654 | -32.15    | 186.31    | 13.726    | 0.634     |
|             | 30   | 31.49 | -0.803   | -0.656 | -13.032   | 136.94    | 12.738    | 0.172     |
|             | 40   | 31.35 | -1.017   | -0.569 | -11.271   | 118.59    | 7.190     | 0.212     |
| 2.000       | 20   | 28.79 | -0.039   | -0.787 | 5.698     | 212.3     | 20.13     | 0.670     |
|             | 30   | 29.55 | -1.179   | -0.453 | 9.959     | 161.09    | 15.101    | 0.283     |
|             | 40   | 29.35 | -1.251   | -0.415 | 8.499     | 125.82    | 14.420    | -0.216    |
| 2.500       | 20   | 28.06 | -1.571   | -0.261 | 108.73    | 137.82    | 61.69     | -1.309    |
|             | 30   | 27.56 | -1.326   | -0.308 | 26.85     | 156.95    | 33.96     | -0.724    |
|             | 40   | 27.46 | -1.310   | -0.322 | 22.86     | 145.17    | 15.817    | -0.084    |
| 3.000       | 20   | 25.84 | -1.056   | -0.356 | -66.15    | 376.2     | 28.11     | 0.986     |
|             | 30   | 26.13 | -1.570   | -0.197 | -54.06    | 268.2     | 24.24     | 0.054     |
|             | 40   | 26.15 | -1.732   | -0.146 | -46.71    | 247.3     | -0.620    | 1.100     |
| 3.500       | 20   | 23.75 | -0.652   | -0.387 | -23.97    | 443.8     | 33.52     | 1.623     |
|             | 30   | 23.95 | -1.117   | -0.228 | 9.321     | 272.7     | 35.85     | -0.008    |
|             | 40   | 24.05 | -1.259   | -0.197 | -4.691    | 234.70    | 15.109    | 0.386     |
| 4.000       | 20   | 22.09 | -0.423   | -0.407 | 5.291     | 479.57    | 72.60     | -0.274    |
|             | 30   | 22.97 | -1.948   | -0.091 | 1.562     | 349.91    | 40.73     | -0.062    |
|             | 40   | 23.00 | -1.530   | -0.089 | -8.113    | 284.47    | 16.114    | 0.517     |



Figure 1. Densities of the aqueous solutions of fructose + sodium chloride at 20 °C plotted against the sodium chloride concentration: (•) 0 mol·kg<sup>-1</sup> fructose; ( $\bigcirc$ ) 1.0 mol·kg<sup>-1</sup> fructose; ( $\blacktriangle$ ) 2.0 mol·kg<sup>-1</sup> fructose; ( $\triangle$ ) 3.0 mol·kg<sup>-1</sup> fructose; ( $\blacksquare$ ) 4.0 mol·kg<sup>-1</sup> fructose; (-) calculated from eq 1.

are listed in Table 3. The relative deviation between experimental and estimated densities was not greater than  $\pm 0.1\%$ . The comparison between the experimental and calculated densities at 20 °C is graphically shown in Figure 1.

The variation of the dynamic viscosity of the fructose + sodium chloride solutions with the concentration was expressed through an extended Jones-Dole equation:<sup>14</sup>

$$\eta/(mPa\cdot s) = \eta_d/(mPa\cdot s) + Ac^{0.5} + Bc + Dc^2 + Ec^{3.5}$$
 (2)

where  $\eta$  is the viscosity of the solution,  $\eta_d$  is the viscosity in the absence of sodium chloride, and c is the molal concentration of sodium chloride. The values of the fitted parameters A, B, D, and E are listed in Table 3. The experimental and calculated viscosities at 40 °C are compared in Figure 2, and the maximum differences are always less than 0.2%.



Figure 2. Viscosities of the aqueous solutions of fructose + solutions of interactions of the aqueous solutions of interose + solution chloride at 40 °C plotted against the solution chloride concentration: ( $\spadesuit$ ) 0 mol·kg<sup>-1</sup> fructose; ( $\bigcirc$ ) 1.0 mol·kg<sup>-1</sup> fructose; ( $\blacktriangle$ ) 2.0 mol·kg<sup>-1</sup> fructose; ( $\bigtriangleup$ ) 3.0 mol·kg<sup>-1</sup> fructose; ( $\blacksquare$ ) 4.0 mol·kg<sup>-1</sup> fructose; (-) calculated from eq 2.

#### **Literature Cited**

- (1) Raoult-Wack, A. L. Recent Advances in the Osmotic Dehydration of Foods. Trends Food Sci. Technol. 1994, 5, 255-260.
- Bolin, H. R.; Huxsoll, C. C.; Jackson, R.; Ng, K. C. Effect of Osmotic Agents and Concentration on Fruit Quality. J. Food Sci. 1983, 48, 202-205.
- Bohuon, P.; Collignan, A.; Rios, G. M.; Raoult-Wack, A. L. Process in Ternary Liquids: Experimental Study of Mass Transport Under Natural and Forced Convection. *J. Food Eng.* **1998**, *37*, 451 - 469
- Collignan, A.; Raoult-Wack, A. L. Dewatering and Salting of Cod by Immersion in Concentrated Sugar/Salt Solutions. Lebensm.-Wiss. Technol. 1994, 27, 259-264.
- Jayaraman, K. S.; Gupta, D. K. D.; Rao, N. B. Effect of Pretreat-ment with Salt and Sucrose on the Quality and Stability of (5)Deshydrated Cauliflower. Int. J. Food Sci. Technol. 1990, 25, 47-60
- Sabadini, E.; Carvalho, B. C., Jr.; Sobral, P. J.; Hubinger, M. D. Mass Transfer and Diffusion Coefficient Determination in the Wet (6)and Dry Salting of Meat. *Drying Technol.* **1998**, *16*, 2095–2115. Herrington, T. M.; Jackson, R. J. Densities of Sucrose Solutions
- TIETTINGTON, I. M.; JACKSON, K. J. DENSITIES Of SUCROSE Solutions Containing Potassium Chloride. Int. Sugar J. 1983, 85, 364–369. Bohuon, P.; Le Maguer, M.; Raoult-Wack, A. L. Densities and Viscosities of Ternary Systems of NaCl–Sucrose–Water from 283.15 to 303.15 K. J. Chem. Eng. Data 1997, 42, 266–269. Marsh, K. N. Recommended Reference Materials for the Realiza-tion of Physicochemical Properties, Blackwell Scientific Publica-tions, Oxford 1997.
- (9)tions: Oxford, 1987
- Weast, R. C. Handbook of chemistry and physics, 57th ed.; The (10)Chemical Rubber Company: Cleveland, OH, 1976. Pitzer, K. S.; Peiper, J. C.; Busey, R. H. Thermodynamic Proper-
- (11)ties of Aqueous Ŝodium Chloride Solutions. J. Phys. Chem. Ref. Data **1984**, 13, 1–102
- (12) Afzal, M.; Saleem, M.; Mahmooh, M. T. Temperature and Concentration Dependence of Viscosity of Aqueous Electrolytes from 20 to 50 °C. Chlorides of Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ba<sup>2+</sup>, Sr<sup>2+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, Cu<sup>2+</sup>, and Cr<sup>3+</sup>. J. Chem. Eng. Data **1989**, 34, 339–346.
- (13) Choudary, N. V.; Jasra, R. V. Densities of Aqueous Solutions of Sodium Bisulfite and Sodium 2-Methylallyl Sulfate. J. Chem. Eng. Data 1994, 39, 181-183.
- (14) Zhang, H. L.; Han, S. J. Viscosity and Density of Water + Sodium Chloride + Potassium Chloride Solutions at 298.15 K. J. Chem. Eng. Data 1996, 41, 516-520.

Received for review August 8, 2000. Accepted May 16, 2001. This work was financed by the Xunta de Galicia (Spain) under Project XUGA 30101B98.

JE000265T